Nuffnang Ads

Tuesday, 8 December 2015

KEKOSONGAN JAWATAN MAJLIS PERBANDARAN DUNGUN DISEMBER 2015

 JAWATAN KOSONG MPD
Taraf Jawatan : Tetap
Tarikh Tutup Permohonan : 31 Disember 2015 (Khamis)

1. Pegawai Penguatkuasa Gred N41
2. Akauntan Gred W41

3. Pegawai Teknologi Maklumat Gred F41
4. Penolong Pegawai Perancang Bandar dan Desa Gred JA 29
5. Penolong Pegawai Teknologi Maklumat Gred F29
6. Penolong Arkitek Landskap Gred JA29

7. Juruteknik Komputer Gred FT17
8. Pegawai Khidmat Pelanggan Gred N17
9. Pemandu Kenderaan Gred H11
10. Penghantar Notis Gred N11


Untuk syarat kelayakan dan cara permohonan KLIK SINI
Untuk borang permohonan KLIK SINI

Monday, 7 December 2015

KEKOSONGAN JAWATAN DI PORT KELANG

KEKOSONGAN JAWATAN DI PELABUHAN KELANG


PERMOHONAN JAWATAN KOSONG DI LEMBAGA PELABUHAN KELANG

KEKOSONGAN
1. PENOLONG PEGAWAI TADBIR(AUDITAN)
2. PEMBANTU TADBIR(PERKERANIAN/OPERASI)

TARIKH TUTUP 21 DISEMBER 2015

Untuk borang permohonan KLIK SINI

PERHATIAN KEPADA PEMOHON:
Dokumen-dokumen di bawah hendaklah dikepilkan dengan borang ini mengikut susunan berikut:-
1. Salinan Kad Pengenalan, Salinan Sijil Kelahiran.
2. Salinan Sijil Berhenti Sekolah, PMR/ SRP/ LCE, SPM/ SPMV/MCE, Sijil Politeknik, STPM/ Diploma/ Ijazah.
3. Salinan Sijil-sijil Akademik, Transkrip, Pengiktirafan Kelayakan JPA.
4. Surat pengesahan dari majikan atau surat tawaran / berhenti berkhidmat.
5. Dokumen berkaitan yang boleh menyokong permohonan jawatan yang berkenaan.

Permohonan yang telah lengkap hendaklah dialamatkan kepada:-
PENGURUS BESAR
LEMBAGA PELABUHAN KELANG
BEG BERKUNCI 202
JALAN PELABUHAN UTARA
42005 PELABUHAN KLANG
SELANGOR DARUL EHSAN
MALAYSIA
[U/P : PENGURUS KANAN (SUMBER MANUSIA)]

Saturday, 5 December 2015

JAWATAN KOSONG IBM MALAYSIA SDN BHD

TARIKH TUTUP 12 DESEMBER 2015

 

CARA MEMOHON

KLIK SINI

Statutory Accountant 

Jr Accounting Analyst

Accounting Analyst 

 

JAWATAN KOSONG UTHM




1. ADMINISTRATIVE POST (9 December 2015) KLIK SINI
2. ACADEMICIAN POST (MALAYSIAN CANDIDATE) (31 December 2015) KLIK SINI
3. ACADEMICIAN POST (INTERNATIONAL CANDIDATE) (31 December 2015) KLIK SINI
4. RESEARCH ASSISTANT KLIK SINI
5. MEDICAL POST KLIK SINI

Thursday, 19 November 2015

Kekosongan Jawatan TETAP/KONTRAK di UiTM Sarawak, Kampus Mukah

Kekosongan jawatan TETAP/KONTRAK di Universiti Teknologi MARA (UiTM) Sarawak, Kampus Mukah
Tarikh tutup: 30 Nov 2015 

Universiti Teknologi MARA dengan ini mempelawa calon-calon Bumiputera Warganegara Malaysia yang berkelayakan dalam bidang-bidang yang berkaitan untuk mengisi kekosongan jawatan TETAP/KONTRAK di Universiti Teknologi MARA (UiTM) Sarawak, Kampus Mukah. seperti berikut:-


Untuk permohonan boleh klik disini KLIK SINI




Jawatan Kosong Tutor Universiti

Jawatan Kosong Tutor Universiti
Tarikh tutup permohonan : 4 Januari 2016

Butiran Kekosongan
Nama Jawatan :Tutor Universiti
Keterangan Kekosongan :Calon yang berminat sila email resume dan salinan akademik transkrip ke alamat ptplkb@ptpl.edu.my
Pengalaman Berkaitan Diperlukan :0Bulan
Status Jawatan Kosong :Tetap
Bilangan Kekosongan :1
Tempat Kerja :
Negeri :KELANTAN
Daerah :KOTA BAHRU
Tarikh Tutup Permohonan :04 Januari 2016
Pekerjaan Ini Sesuai Untuk :Lepasan Sekolah/IPT
Waktu Bekerja :Normal
Gaji Ditawarkan :RM 1500
Jantina :Tidak Memilih
Taraf Perkahwinan :Tidak Memilih

Untuk memohon  KLIK SINI > Carian Segera Tutor Universiti

 

Sunday, 1 November 2015

Chapter 5: Form 4_Additional Mathematics_Indices and Logarithms




Question 1:

Simplify each of the following

Math And Beautiful Mind

Math and Beautiful Mind

Math and Beautiful Mind

Mind and Beautiful Mind

Math and Beautiful Mind

Math and Beautiful Mind

Math and Beautiful Mind

Math and Beautiful Mind
Math and Beautiful Mind

Math and Beautiful Mind
Math and Beautiful Mind


Math and Beautiful Mind

Math and Beautiful Mind









Friday, 30 October 2015

Indices

Indices


Indices

Law of Indices

Indices laws

Multiplying and dividing
When multiplying you add the indices, and when dividing you subtract the indices.
It is as follow: x3 × x7 = x10, and r5 ÷ r3 = r2
 
Index Laws

Diffentiation: Question and Answer

BASIC DIFFENTIATION
 Diffentiation: Question and Answer
Simple and easiest way to differentiate
Here are the simple differentiation which is the simple one. A lot of people keep saying that Addmath are so difficult. So I am here sharing my knowledge, to  help and guide you to learn Addmath with the simple way.
Math And Beautiful Mind

First and Second Differentiation Calculation

Differentiation: Questions and Answers


Simple and easy way to differentiate

Math and Beautiful Mind


         (a) y= 24x3 – 4x9 + 3x12
y’ = 24(3)x3-1 – 4(9)x9-1 + 3(12)x12-1
y’ = 72x2 – 36x8 + 36x11(First differentiation)
y’ = 72x2 – 36x8 + 36x11
y’ = 72(2)x2-1 – 36(8)x8-1 + 36(11)x11-1
y’’ = 144x – 288x7 + 396x10(Second differentiation)
         (b) y= 10x2(3x + 8)
y= 30x3 + 80x2
y’ = 90x2 + 160x
y’’ = 180x + 160
         (c) y= 27x3/4x
y = 6.75x2(First simplify the question
y’ = 13.5x
y’’ = 13.5

Chapter 2: Form 4_Additional Mathematics_Quadratic Equations

Quadratic Equations

Solve the equation
(a) 4x2 -25 = 0                     (c) X2 – 6x + 9 = 0
(b) x2 – 6x – 7 = 0               (d) 3X2 + 5x – 2 = 0
Answer
COMPLICATED
EASY
(a) 4x2 -25 = 0
2X       +5
2X       -5
So (2X +5)(2X-5) = 0
2X+5 = 0       2X – 5 = 0
X = -5/2         X = 5/2
Use Calculator only
First Press MODE > EQN > DEGREE (2) Then insert the value a, b and c.
1. MODE, 2. EQN, 3. DEGREE (2), for a press 4, then press =, for b press 0 then press = and for c press -25 and press =
You will get the answer X1 = 2.5 which is equal to 5/2 and X2= -2.5 or -5/2
 So X = 5/2 and X = -5/2
X = 5/2     X = -5/2
2X = 5      2X = -5
2X-5 = 0   2X + 5 = 0
(2X-5)(2X+5) = 0
X = -5/2, 5/2#
(b) x2 – 6x – 7 = 0
X       -7
X       +1
(X-7)(X+1) = 0
X -7 = 0     X +1= 0
X = 7          X = -1
1. MODE, 2. EQN, 3. DEGREE (2), 4. a press 1 then press =, 5. b press -6 then press =, 6. c press -7 then =
The answer will be
X1 = 7, X2 = -1
(c) X2 – 6x + 9 = 0
X        -3
X        -3
(X-3)(X-3) = 0
X-3 = 0
X = 3
a = 1, b = -6 c =9
X=3
(d) 3X2 + 5x – 2 = 0
3X        -1
X        +2
(3X-1)(X+2)= 0
3X-1 = 0     X+2 = 0
X = 1/3      X = -2
a = 3, b = 5, c = -2
X1 = 1/3, X2= -2

**For additional mathematics it is better for you to calculate it by just using calculator cause it will save your time in examination. 


SOLVING BY COMPLETING THE SQUARE

Example 1:
Solve the equation x2 – 6x -7 = 0 by completing the square.

Answer:
 x2 – 6x -7 = 0
x2 – 6x = 7 (*Transfer the constant to the right side)
x2 – 6x + (-6/2)2 = 7+ (-6/2)2 (*Add [Coefficient of x/2]2 to the both side)
x2 – 6x + (-3)2 = 7+9
(x-3)2 = 16 (*Completing the square) (*Remove -6x)
x-3 = (16)1/2
x-3 = ± 4
x = 4 + 3        or x = -4 + 3
x = 7                    x = -1
*You can check the answer using the calculator whether your answer is right or wrong using the above step. MODE > EQN > DEGREE (2).

Example 2:
Solve the equation x2 + 2x -3 = 0 by completing the square.

Answer:
x2 + 2x -3 = 0
x2 + 2x  = 3
x2 + 2x + (2/2)2  = 3 + (2/2)2
x2 + 2x + (1)2  = 4
(x + 1)2 = 4
x + 1 = (4)1/2
x + 1 = ± 2
x = 2 -1          or        x = -2 -1
x = 1                          x = -3

Example 3:
Solve the equation x2 -4x -12 = 0 by completing the square.

Answer:
x2 - 4x -12 = 0
x2 -4x = 12
x2 -4x + (-4/2)2  = 12 + (-4/2)2  
x2 -4x + (-2)2  = 16
(x -2)2 = 16
x – 2 = (16)1/2
x – 2 = ± 4
x = 4 + 2                    or        x = -4 + 2

x = 6                                      x = -2

SOLVING BY USING THE FORMULA
Example 1:
Solve the equation x2 - 6x – 7 = 0 by using formula.
Answer
x2 - 6x – 7 = 0
a = 1, b = -6, c = -7

















**If you want to check your answer whether right or not, you just need to key in the number into the calculator, using the above method and you will get the right answer.


Example 2:
Solve the quadratic equation 4x2 - 9x + 1 = 0 by using formula. Give your answers correct to two decimal places.
Answer
4x2 - 9x + 1 = 0

a= 4, b = -9, c = 1













FORMING QUADRATIC EQUATIONS FROM GIVEN ROOTS

Example

Form a quadratic equation whose roots are

(a) 3 and -4              (b) 5 only                  (c) 2 and 3


(a) 3 and -4
(b) 5 only
(c) 2 and 3
Since the roots are 3 and -4, so we can write x = 3 and x = -4.
*You can use any alphabet whether “x”, “y”, “z”, or others.
 x = 3             x = -4
x-3 = 0          x + 4 = 0
       (x-3)(x+4) = 0
x2 + 4x -3x – 12 = 0
x2 + x -12 = 0#
OR
Using this formula:
x2 – (α + β)x +αβ = 0
*a and b is root
x2 – (3+(-4))x + (3)(-4) = 0
x2 + x – 12 = 0
x = 5
x-5 = 0
(x-5)(x-5) = 0
x2 – 10x + 25 = 0#
OR
x2 – (α + β)x +αβ = 0
x2 – (5+5)x + 5(5) = 0
x2 -10x +25 = 0
x = 2         x = 3
x-2 = 0       x – 3 =0
(x-2)(x-3) = 0
x2-5x +6 = 0#
OR
x2 – (α + β)x +αβ = 0
x2 – (2+3)x +2(3) = 0
x2 – 5x + 6 = 0


SUM OF ROOTS AND PRODUCT OF ROOTS

Roots α and β

(x - α)(x – β) = 0
x2 –βx - αx+αβ = 0
x2 – (α + β)x +αβ = 0
x2 – (sum of roots)x +(product of roots) = 0 ---------------- (1)

lets α and β be also the roots of the quadratic equation

ax2 + bx + c = 0
x2 + bx/a + c/a = 0 ------------- (2)
Therefore:
x2 – (α + β)x +αβ = 0 ---------------- (1)
x2 + bx/a + c/a = 0 ------------- (2)

Sum of roots:          α + β = -b/a
Product of roots:    αβ = c/a

Example 1:

Determine the sum and the product of roots for each of the following quadratic equation.
(a) 3x2 – 6x + 1 = 0                         (b) -x2 – 8x + 5 = 0 
(c) x2 –6x+3 =0                                (d) 2x2 – 3x - 2 =0

(a) 3x2 – 6x + 1 = 0
(b) -x2 –8x +5 =0
(c) x2 –6x+3 =0
(d) 2x2 – 3x - 2 =0
3x2 – 6x + 1 = 0 (*Let x2 be alone by dividing the 3 to others)
x2 – 6x/3 + 1/3 = 0
x2 – 2x + 1/3 = 0
a       b       c  
SOR:   α + β = -b/a
b = -2, a = 1
                     = -(-2)/1
                     = 2
POR: αβ = c/a
c = 1/3, a = 1
                = [1/3]/1
                = 1/3
*to check whether your answer correct of not, you can build the equation by using the SOR and POR using this formula x2 – (sum of roots)x +(product of roots) = 0. If the equation same with the given equation so your answer is true.
-x2 – 8x + 5 = 0
x2 – 8x/(-1) + 5/(-1) = 0
x2 + 8x - 5 = 0
SOR:   α + β = -b/a
= -8/1
= -8
POR: αβ = c/a
= -5/1
= -5
x2 – 6x + 3 = 0 (*Since the x2 already alone and positive you can proceed to SOR and POR.
SOR:   α + β = -b/a
= -(-6)/1
= 6
POR: αβ = c/a
= 3/1
= 3
2x2 – 3x - 2 =0
x2 – 3x/2 – 2/2 =0
x2 – 3x/2 –1 =0
SOR: α + β = -b/a
= -(-3)/1
= 3
POR: αβ = c/a
= (-1)/1
= -1
Example 2:

If α and β are the roots of the equation x2 –6x+3 =0, form the equations whose roots are
(a) 2α, 2β                             (b) α/β, β/α

Answer:

α and β are the roots of the equation x2 –6x+3 =0

So:
SOR:   α + β = -b/a              POR: αβ = c/a

α + β = -(-6)/1                                 αβ = 3/1

α + β = 6                                 αβ = 3

(a) 2α, 2β
(b) α/β, β/α
SOR: 2α + 2β
= 2(α+β)
= 2(6) (*Substitute α + β = 6)
= 12
POR: (2α)(2β)
= 4 αβ
= 4(3) (*Substitute αβ = 3)
= 12
Then form the equation using this formula:
 x2 – (SOR)x +(POR) = 0
x2 – (12)x +(12) = 0
x2 – 12x +12 = 0
SOR: α/β + β/α
= [αα + ββ]/[αβ]
= [α2 + β2]/[αβ]
= ([α + β]2 - 2αβ)/[αβ]
= ([6]2 – 2[3])/ 3
= [36-6]/3
= 10
POR: (α/β)(β/α)
= αβ/αβ
= 1
x2 – (SOR)x +(POR) = 0
x2 –10x +1 = 0

Example 3:

The roots of the equation 2x2 –4x+1 =0 are α and β, form the equations whose roots are
(a) 3α, 3β                 (b) α + 1, β +1                     (c) α/β, β/α

Answer:

α and β are roots of the equation 2x2 –4x+1 =0

2x2 –4x+1 =0
x2 –4x/2 + 1/2 =0
x2 –2x + 1/2 =0

So:
SOR:   α + β = -b/a              POR: αβ = c/a
α + β = -(-2)/1                                 αβ = [1/2]/1
α + β = 2                                 αβ = 1/2

(a) 3α, 3β
(b) α + 1, β +1
(c) α/β, β/α
SOR: 3α + 3β
= 3(α + β)
= 3(2) (Substi: α + β = 2)
= 6
POR: (3α)(3β)
= 9αβ
= 9(1/2)
= 9/2
x2 – (SOR)x +(POR) = 0
x2 –6x +9/2 = 0
2x2 –12x +9 = 0
SOR: (α + 1) + (β +1)
= (α + β) + 2
= 2 + 2
= 4
POR: (α + 1)(β +1)
= αβ + α + β + 1
= ½ + 2 + 1
= 7/2
x2 – (SOR)x +(POR) = 0
x2 –4x +7/2= 0
2x2 –8x +7= 0
SOR: α/β + β/α
= [αα + ββ]/[αβ]
= [α2 + β2]/[αβ]
= ([α + β]2 - 2αβ)/[αβ]
= ([2]2 – 2[1/2])/[1/2]
= [4 – 1]/[1/2]
= 6
POR: (α/β)(β/α)
= αβ/αβ
= 1
x2 – (SOR)x +(POR) = 0
x2 – 6x +1 = 0
Example 4:

One of the roots of the equation 3x2 – 6x+ k =0 is three times the other. Find the roots and the value of k.

Answer:

3x2 – 6x+ k =0
x2 – 6x/3 +k/3 =0
x2 – 2x+ k/3 =0

Roots is three times the other
3α and α
SOR: 3α + α = -b/a                         POR: 3α(α) = c/a
4α = -(-2)/1                                                  3α2 = [k/3]/1
4α = 2                                                    3[1/2]2 = k/3 [Substi: α = ½]
α = ½                                                               ¾ = K/3
                                                                          k = 9/4

Since the 3α and α are the roots, α  = ½  and 3α = 3/2.

You can check your answer by form an equation based on SOR and POR 
3x2 – 6x+ k =0
3x2 – 6x+ 9/4 =0 (Substi: k = 9/4)
12x2 – 24x+ 9 =0
4x2 – 8x+ 3 =0  ------------(1)
x2 – (SOR)x +(POR) = 0
x2 – (2)x +(3/4) = 0
4x2 – 8x +3 = 0 ------------(2)

Equation (1) and (2) are same. So your answer is true.
Example 5:

One of the roots of the equation 2x2 – 8x+ p =0 is two times the other. Find the roots and the value of p.

Answer:
2x2 – 8x+ p =0
x2 – 8x/2+ p/2 =0
x2 – 4x+ p/2 =0
Roots is three times the other
2α and α

SOR: 2α + α = -b/a                         POR: 2α(α) = c/a
3α = -(-4)/1                                                  2α2 = [p/2]/1
3α = 4                                                           2α2 = [p/2]
α = 4/3                                                   2[4/3]2 = p/2
32/9 = p/2
                                                                        p = 64/9
Since the 2α and α are the roots, α = 4/3 and 2α = 8/3.

You can check your answer by form an equation based on SOR and POR 
2x2 – 8x+ p =0
2x2 – 8x+ 64/9 =0 (Substi: p = 64/9)
18x2 – 72x+ 64 =0
18x2 – 72x+ 64 =0
9x2 – 36x+ 32 =0 -----------(1)

x2 – (SOR)x +(POR) = 0
x2 – 4x +32/9 = 0
9x2 – 36x +32 = 0 -------------(2)


Equation (1) and (2) are same. So your answer is true. 


Example 6:

If the roots of the x2 + kx + 40 = 0 are in the ratio 2:5, determine the value of k.

ratio 2:5
2α, 5α
SOR: 2α + 5α = -k/1                       POR: 2α(5α) = 40/1
                  7α = -k                                        10α2 = 40
                                                                           Î±2 = 4
                                                                              Î± = ± 2

7α = -k                                               or        7α = -k
7(2) = -k (Substi: α = 2)                             7(-2) = -k (Substi: α = -2)
k = -14                                                           k = 14

THE TYPES OF ROOTS OF A QUADRATIC EQUATION

The quadratic equation ax2 + bx + c = 0 has
(a) two roots which are different if     b2 – 4ac > 0,
(b) two roots which are equal if          b2 – 4ac = 0,
(c) no roots if                                          b2 – 4ac < 0
Example 1:

Determine the type of roots for each of the following quadratic equations.

(a) 4x2 -12x + 9 = 0            (b) 3x2 +5x – 2 = 0              (c) 5x2 – 3x + 1 = 0
(d) 2x2 – 3x – 2 = 0             (e) 3x2 - 4x + 5 = 0              (f) -4x2 + x + 1 = 0
(a) 4x2 -12x + 9 = 0
(b) 3x2 +5x – 2 = 0
(c) 5x2 – 3x + 1 = 0
b2 – 4ac
b = -12, a = 4, c = 9
(-12)2 – 4(4)(9) = 0
Two roots which are equal if b2 – 4ac = 0.
So the equation has two equal roots.
b2 – 4ac
b = 5, a = 3, c = -2
(5)2 – 4(3)(-2) = 49
Two roots which are different if b2 – 4ac > 0.
So the equation has two different roots which are different.
b2 – 4ac
b = -3, a = 5, c = 1
(-3)2 – 4(5)(1) = -11
No roots if b2 – 4ac < 0.
So the equation does not have any root.
(d) 2x2 – 3x – 2 = 0
(e) 3x2 - 4x + 5 = 0
(f) -4x2 + x + 1 = 0
b2 – 4ac
b = -3, a = 2, c = -2
(-3)2 – 4(2)(-2) = -7
b2 – 4ac < 0
Does not have any root.
b2 – 4ac
b = -4, a = 3, c = 5
(-4)2 – 4(3)(5) = -44
b2 – 4ac < 0
Does not have any root.
b2 – 4ac
b = 1, a = -4, c = 1
(1)2 – 4(-4)(1) = 17
b2 – 4ac > 0
Has two different roots which are different.
SOLVING PROBLEM INVOLVING ‘b2 – 4ac’
Example 1:

Find the value of p if the quadratic x2 – 2px + 2p + 3 = 0 has two equal roots.

Answer:

x2 – 2px + [2p + 3] = 0
a = 1, b = 2p, c = 2p +3
b2 – 4ac = 0 (*Equation has two equal roots)
(2p)2 – 4(1)(2p+3) = 0
4p2 – [8p + 12] = 0
4p2 – 8p -12= 0
p2 – 2p -3 = 0 (*Use calculator [casio 570] to calculate)

(p + 1)(p – 3) = 0
(p + 1) = 0     or        (p – 3) = 0
p = -1                                  p = 3
Example 2:

Show that the equation kx2 + (1 – 2k)x + k + 3 = 0 has roots which are different if k < 1/16.

Answer:

a = k, b = 1-2k, c = k + 3
Two roots which are different if b2 – 4ac > 0.
(1- 2k)2 – 4(k)(k+3) > 0
1 – 4k+ 4k2 – 4k(k+3) > 0
1 – 4k+ 4k2 – 4k2 - 12k > 0
1 – 16k > 0               or        -16k > -1
1 > 16k                                  16k < 1
1/16 > k                                k < 1/16

k < 1/16 


Example 3:

Show that the equation (9k-8)x2 – 6kx + k + 2 = 0 has roots which are different if k < 8/5.

Answer:

a = 9k – 8, b = -6k, c = k + 2
Two roots which are different if b2 – 4ac > 0.

(-6k)2 – 4(9k-8)(k+2) > 0
36k2 – [(36k-32)(k +2)] > 0
36k2 – [36k2 + 72k -32k – 64] > 0
36k2 – [36k2 +40k -64] > 0
-40k + 64 > 0
40k -64 < 0
40k < 64
k < 64/40
k < 8/5

Example 4:

Show that the equation tx2 + (3- 2t)x + t-5 = 0 has no roots if t < -9/8.

Answer:

a = t, b = 3 – 2t, c = t-5
No roots if b2 – 4ac < 0.

(3-2t)2 – 4(t)(t-5) < 0
9 – 12t + 4t2 - 4t2 + 20t < 0
9 + 8t < 0
8t < -9

t < -9/8
Related Posts Plugin for WordPress, Blogger...